Mixed Variable Optimization of the Number and Composition of Heat Intercepts in a Thermal Insulation System

نویسنده

  • MICHAEL KOKKOLARAS
چکیده

In the literature, thermal insulation systems with a fixed number of heat intercepts have been optimized with respect to intercept locations and temperatures. The number of intercepts and the types of insulators that surround them were chosen by parametric studies. This was because the optimization methods used could not treat such categorical variables. Discrete optimization variables are categorical if the objective function or the constraints can not be evaluated unless the variables take one of a prescribed enumerable set of values. The key issue is that categorical variables can not be treated as ordinary discrete variables are treated by relaxing them to continuous variables with a side constraint that they be discrete at the solution. A new mixed variable programming (MVP) algorithm makes it possible to optimize directly with respect to mixtures of discrete, continuous, and categorical decision variables. The result of applying MVP is shown here to give a 65% reduction in the objective function over the previously published result for a thermal insulation model from the engineering literature. This reduction is largely because MVP optimizes simultaneously with respect to the number of heat intercepts and the choices from a list of insulator types as well as intercept locations and temperatures. The main purpose of this paper is to show that the mixed variable optimization algorithm can be applied effectively to a broad class of optimization problems in engineering that could not be easily solved with earlier methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed variable optimization of thenumber and composition of heat

In the literature, thermal insulation systems with a xed number of shields used as heat intercepts have been optimized with respect to the temperatures and locations of the shields. The number of shields and the type of insulators that surround them were chosen by parametric studies. This was because such categorical variables, which refer to a particular choice from a list of \categories", cou...

متن کامل

Mixed Variable Optimization of a Load-Bearing Thermal Insulation System Using a Filter Pattern Search Algorithm

Abstract: This paper describes the optimization of a load-bearing thermal insulation system characterized by hot and cold surfaces with a series of heat intercepts and insulators between them. The optimization problem is represented as a mixed variable programming (MVP) problem with nonlinear constraints, in which the objective is to minimize the power required to maintain the heat intercepts a...

متن کامل

Effect of slip and variable thermal boundary conditions on hydromagnetic mixed convection flow and heat transfer from a non-linearly stretching ‎surface

The effect of partial slip and temperature dependent fluid properties on the MHD mixed convection flow from a heated, non-linearly stretching surface in the presence of radiation and non-uniform internal heat generation/absorption is investigated. The velocity of the stretching surface was assumed to vary according to power-law form. Thermal transport is analyzed for two types of non-isothermal...

متن کامل

Heat Transfer, Environmental Benefits, and Social Cost Analysis of Different Insulation Methods by Considering Insulation Disadvantages

In this paper, the thermal performance of four common insulators in two internal and external insulation systems is investigated for the ASHRAE setpoint range by applying detailed numerical simulation and Anti-Insulation phenomenon. Anti-Insulation phenomenon and consequent extra load on the HVAC system can occur following the thermal insulation of a building if proper temperature setpoint is n...

متن کامل

Mixed convection fluid flow and heat transfer and optimal distribution of discrete heat sources location in a cavity filled with nanofluid

Mixed convection fluid flow and heat transfer of water-Al2O3 nanofluid inside a lid-driven square cavity has been examined numerically in order to find the optimal distribution of discrete heat sources on the wall of a cavity. The effects of different heat source length, Richardson number and Grashof number on optimal heat source location has been investigated. Moreover, the average Nusselt num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001